A Brief Investigation of a Stieltjes Transform in a Class of Boehmians

نویسنده

  • S. K. Q. AL-OMARI
چکیده

Various integral transforms have been extended to various spaces of Boehmians. In this article, we discuss the Stieltjes transform in a class of Boehmians. The presented transform preserves many properties of the classical transform in the space of Boehmians.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending the Stieltjes Transform

The classical Stieltjes transform is extended to a subspace of Boehmians. The transform is shown to be an analytic function in the half-plane Re z > 0. Some Abelian type theorems are established.

متن کامل

Wavelet Analysis on a Boehmian Space

We extend the wavelet transform to the space of periodic Boehmians and discuss some of its properties. 1. Introduction. The concept of Boehmians was introduced by J. Mikusi´nski and P. Mikusi´nski [7], and the space of Boehmians with two notions of conver-gences was well established in [8]. Many integral transforms have been extended to the context of Boehmian spaces, for example, Fourier trans...

متن کامل

On the Fourier transform and the exchange property

Since Boehmians were introduced, extensions of the Fourier transform to spaces of Boehmians attracted a lot of attention (see [2, 3, 4, 5, 6, 7, 8, 9]). In some cases, the range of the extended Fourier transform is a space of functions. In other constructions, the range is a space of distributions or a space of Boehmians. In this paper, we would like to consider the space of tempered Boehmians ...

متن کامل

Integrable Boehmians, Fourier Transforms, and Poisson’s Summation Formula

Boehmians are classes of generalized functions whose construction is algebraic. The first construction appeared in a paper that was published in 1981 [6]. In [8], P. Mikusiński constructs a space of Boehmians, βL1(R), in which each element has a Fourier transform. Mikusiński shows that the Fourier transform of a Boehmian satisfies some basic properties, and he also proves an inversion theorem. ...

متن کامل

Wavelet Transform of Fractional Integrals for Integrable Boehmians

The present paper deals with the wavelet transform of fractional integral operator (the RiemannLiouville operators) on Boehmian spaces. By virtue of the existing relation between the wavelet transform and the Fourier transform, we obtained integrable Boehmians defined on the Boehmian space for the wavelet transform of fractional integrals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014